SDTM AND ADaM: HANDS-ON SOLUTIONS

CDISC French Speaking User Group
Paris, France
17 February 2012

Joris De Bondt, Tineke Callant,
Head Data Standards & Senior Biostatistical Analyst
Process Improvements

WHEN YOU NEED TO BE SURE
OUTLINE

- SDTM and ADaM: Standards review
- A central Metadata Repository
- ADaM implementation: Strategies
- Conclusion
CDISC: STANDARDS REVIEW

- CDISC end-to-end!
 - CDASH identifies the (e)CRF data collection fields
 - SDTM defines a standard structure for study data tabulations
 - ADaM specifies the fundamental principles for the creation of analysis datasets
STUDY DATA TABULATION MODEL (SDTM) & ANALYSIS DATA MODEL (ADaM)

- SDTM and ADaM: Hands-on solutions
 - Focus on submission standards: SDTM, ADaM, (define.xml)
 - Hands-on solutions for daily work:
 - Manage a spectrum of SDTM implementations
 - ADaM best build upon SDTM, not on ‘raw’ data
SDTM & ADaM AT SGS

- Data Management
 - SDTM datasets at (and before) database lock with associated metadata

- Statistics
 - Statistical analysis on SDTM datasets
 - ADaM datasets with associated metadata
STUDY DATA TABULATION MODEL (SDTM): WHAT’S NEW, WHAT’S COMING?

Today
- Implementation Guide v3.1.2, 12-NOV-2008
- Amendment 1 to SDTM 1.2 (IG 3.1.2), 14-DEC-2011
- Alzheimer’s Disease v1.0, 30-NOV-2010
- + CRTDD v1.0.0, 09-FEB-2005

Coming up
- Non-Subject Data Supplement, draft 17-JUN-2011
- Device Supplement, draft 24-JAN-2012
- Virology draft domains, draft AUG-2011
- Development program for 55 therapeutic area standards in 5 years [CDISC strategic goals & themes]
FDA Study Data Standards Catalog

<table>
<thead>
<tr>
<th>Data Standard Type</th>
<th>Governing Organization</th>
<th>Standard</th>
<th>Version</th>
<th>Implementation Guide</th>
<th>FDA Component</th>
<th>Date Support Begins*</th>
<th>Date Support Ends**</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Format</td>
<td>SAS</td>
<td>SAS Transport</td>
<td>5</td>
<td></td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W3C</td>
<td>XML</td>
<td>1.0</td>
<td></td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adobe</td>
<td>PDF</td>
<td>1.4/1.5/1.6</td>
<td></td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI</td>
<td>ASCII</td>
<td></td>
<td></td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Exchange and Analysis Standard</td>
<td>CDISC</td>
<td>SDTM</td>
<td>SDTM 1.2</td>
<td>3.1.2</td>
<td>CBER & CDER</td>
<td>2009-10-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDISC</td>
<td>SDTM</td>
<td>SDTM 1.1</td>
<td>3.1.1</td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDISC</td>
<td>SEND</td>
<td>SDTM 1.2</td>
<td>3.0</td>
<td>CDER</td>
<td>2011-06-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDISC</td>
<td>ADaM</td>
<td>2.1</td>
<td>1.0</td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>Terminology (General)</td>
<td>CDISC</td>
<td>CDISC Terminology</td>
<td>2011-06-10 or later</td>
<td>CBER & CDER</td>
<td>2011-06-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminology (General)</td>
<td>CDISC</td>
<td>CDISC Terminology</td>
<td>All Previous Version</td>
<td>CBER & CDER</td>
<td>Ongoing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Version 1.0; Effective 13-JUN-2011
SGS maintains 16 SDTM models!

- Multiple SDTM versions
- Multiple sponsors
 - Custom controlled terminology
 - Custom domains
 - Custom variable implementations
- Multiple implementations per sponsor per SDTM version
SDTMs: THE CHALLENGE, AN EXAMPLE

- SDS team TC: 15-Jul-2011
 - Holter data in Interventions domain

Example A) Mockups of Revised Proposal

<table>
<thead>
<tr>
<th>STUDYID</th>
<th>DOMAIN</th>
<th>USUBJID</th>
<th>PRSEQ</th>
<th>PRTRT</th>
<th>PROCCUR</th>
<th>PRSTDTC</th>
<th>PRENDTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC123</td>
<td>PR</td>
<td>ABC123-001</td>
<td>1</td>
<td>HOLTER MONITOR</td>
<td>Y</td>
<td>2011-01-01</td>
<td>2011-01-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T08:00</td>
<td>T09:45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDYID</th>
<th>DOMAIN</th>
<th>USUBJID</th>
<th>EGSEQ</th>
<th>EGTESTCD</th>
<th>EGTEST</th>
<th>EGORRES</th>
<th>EGORRESU</th>
<th>EGDTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC123</td>
<td>EG</td>
<td>ABC123-001</td>
<td>1</td>
<td>RR</td>
<td>RR Interval</td>
<td>475</td>
<td>msecs</td>
<td>2011-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABC123-001</td>
<td>2</td>
<td>RR</td>
<td>RR Interval</td>
<td>800</td>
<td>msecs</td>
<td>2011-01-01</td>
</tr>
</tbody>
</table>

- Holter data in Findings domain

Example B) Mockups of Original Proposal

<table>
<thead>
<tr>
<th>STUDYID</th>
<th>DOMAIN</th>
<th>USUBJID</th>
<th>MPSEQ</th>
<th>MPTESTCD</th>
<th>MPTEST</th>
<th>MPORRES</th>
<th>MPSTAT</th>
<th>MPDTC</th>
<th>MPENDTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC123</td>
<td>PR</td>
<td>ABC123-001</td>
<td>1</td>
<td>HOLTER Monitor</td>
<td>DONE</td>
<td>2011-01-01</td>
<td>2011-01-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T08:00</td>
<td>T09:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDYID</th>
<th>DOMAIN</th>
<th>USUBJID</th>
<th>EGSEQ</th>
<th>EGTESTCD</th>
<th>EGTEST</th>
<th>EGORRES</th>
<th>EGORRESU</th>
<th>EGDTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC123</td>
<td>EG</td>
<td>ABC123-001</td>
<td>1</td>
<td>RR</td>
<td>RR Interval</td>
<td>475</td>
<td>msecs</td>
<td>2011-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABC123-001</td>
<td>2</td>
<td>RR</td>
<td>RR Interval</td>
<td>800</td>
<td>msecs</td>
<td>2011-01-01</td>
</tr>
</tbody>
</table>

2011-01-01 T08:10
2011-01-01 T10:08
SDTM AND ADaM INTERFACING: THE CHALLENGE

- SDTM concepts are standard, details are not
- Due to:
 - Missing therapeutic area standards
 - Missing controlled terminology items
 - Flexible SDTM variables
 - Permissible variables
 - Flexible variable length
 » based on used codelist values (SDTM Amendment 1)
 » only few variables lengths are fixed (e.g. --TESTCD, --TEST, --PARMCD, --PARM, QNAM, QLABEL, ARMCD)

16 SDTMs to 16 ADaMs?
Add a new dimension to your trials
 • Use Metadata from the start

Pull the CRF forms for all your trials out of a metadata repository into the (e)CRF design tool
SDTM SPECTRUM MANAGEMENT: THE SOLUTION

- Add a new dimension to your trials
 - Use Metadata during the trial
 - Verify **consistency** of your trials
 - Use the metadata repository to **update** the protocol amendments
 - Store the trial metadata in the metadata repository for **future reference**
SDTM SPECTRUM MANAGEMENT: THE SOLUTION

- Add a new dimension to your trials
 - Use Metadata till the end
 - Sponsor SDTM IGs with update option copied from fixed SGS SDTM IGs
 - Use the trial metadata in the metadata repository to generate SDTM datasets

Metadata Repository

SGS: SDTM 1.1
SGS: SDTM 1.2

XXX: SDTM 1.1 (v1)
XXX: SDTM 1.1 (v2)
XXX: SDTM 1.2 (v1)
YYY: SDTM 1.2 (v1)
YYY: SDTM 1.2 (v2)
SDTM SPECTRUM MANAGEMENT: THE SOLUTION

- Add a new dimension to your trials
 - Share Metadata across standards and teams
 - ... and bring the SDTM spectrum closer to ADaM

![Diagram showing SDTM and ADaM connections through Metadata Repository]
METADATA REPOSITORY: WHAT’S IN THE BOX?

- CDISC metadata
 - SDTM version
 - SDTM metadata
 - ...

- Study characteristics
 - Therapeutic area
 - Clinical phase
 - Trial design characteristics
 - ...

- Project metadata
 - Study timelines
 - Key Performance Indicators
 - ...
OUTLINE – ADaM 2.1

- Introduction
- SDTM and ADaM implementation: Strategies
- Linear method
- Conclusion
ADaM 2.1 – INTRODUCTION

- Excel file → SAS datasets
 - codelist.sas7bdat
 - domlist.sas7bdat
 - varlist.sas7bdat

- Analysis Dataset Metadata – domlist.sas7bdat
- Analysis Variable Metadata – varlist.sas7bdat

<table>
<thead>
<tr>
<th>Dataset name</th>
<th>Display format</th>
<th>Variable name</th>
<th>Code list / Controlled terms – codelist.sas7bdat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable label</td>
<td>Source / Derivation</td>
<td>Variable type</td>
<td>+ Parameter identifier (Basic Data Structure (BDS))</td>
</tr>
<tr>
<td>Variable type</td>
<td>+ Length (SAS environment)</td>
<td></td>
<td>+ Position in observation (SAS environment)</td>
</tr>
</tbody>
</table>

- ADaM V2.1: Analysis Results Metadata (not required)
ADaM 2.1 – INTRODUCTION

- CDISC Analysis Data Model V2.1
 - Fundamental principles
 - Traceability
 - Practical considerations
 - Maintain the values and attributes of SDTM variables

- CDISC ADaM implementation guide V1.0
 - General variable naming convention
Any ADaM variable whose name is the same as an SDTM variable must be a copy of the SDTM variable, and its label, meaning, and values must not be modified.
ADaM 2.1 – INTRODUCTION

- Traceability
- Flexible
- Delivery of consistent analysis datasets
- Easy to use (Excel file)
- Easy to maintain (Excel file)
OUTLINE – ADaM 2.1

- Introduction
- SDTM and ADaM implementation: Strategies
- Linear method
- Conclusion
STRATEGIES FOR IMPLEMENTING SDTM AND ADaM STANDARDS: SUSAN KENNY – MICHAEL LITZSINGER

- Parallel method

 DBMS Extract ← SDTM Domains ← Analysis Datasets

- Retrospective method

 DBMS Extract → Analysis Datasets → SDTM Domains

- Linear method

 DBMS Extract → SDTM Domains → Analysis Datasets

- Hybrid method

 DBMS Extract → SDTM Draft Domains → Analysis Datasets → SDTM Final Domains
STRATEGIES FOR IMPLEMENTING SDTM AND ADaM STANDARDS: SUSAN KENNY – MICHAEL LITZSINGER

- Linear method
 - Traceability
 - CDISC SDTM/ADaM Pilot Project
 - Recommended

 DBMS Extract → SDTM Domains → Analysis Datasets

- Hybrid method
 - Traceability
 - Amendment 1 SDTM V1.2 and SDTM IG V3.1.2
 - Future?!?

 DBMS Extract → SDTM Draft Domains → Analysis Datasets → SDTM Final Domains
OUTLINE – ADaM 2.1

- Introduction
- SDTM and ADaM implementation: Strategies
- Linear method
- Conclusion
Step 1
Linear Method – Step 1

CDISC SDTM Implementation Guide

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET NAME</td>
<td>POSITION IN OBSERVATION</td>
<td>VARIABLE NAME</td>
<td>VARIABLE LABEL</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADSL</td>
<td>1</td>
<td>STUDYID</td>
<td>Study Identifier</td>
</tr>
<tr>
<td>ADSL</td>
<td>2</td>
<td>USUBJID</td>
<td>Unique Subject Identifier</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADSL</td>
<td>13</td>
<td>RACE</td>
<td>Race</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE TYPE</td>
<td>LENGTH</td>
<td>DISPLAY FORMAT</td>
<td>CODELIST / CONTROLLED TERMS</td>
<td>SOURCE / DERIVATION</td>
</tr>
<tr>
<td>Char</td>
<td>Char</td>
<td>Char</td>
<td>Char</td>
<td></td>
</tr>
<tr>
<td>Char</td>
<td>Char</td>
<td>Char</td>
<td>(RACE)</td>
<td></td>
</tr>
<tr>
<td>Char</td>
<td>Char</td>
<td>Char</td>
<td></td>
<td>DM.RACE</td>
</tr>
</tbody>
</table>
Any ADaM variable whose name is the same as an SDTM variable must be a copy of the SDTM variable, and its label, meaning, and values must not be modified.
LINEAR METHOD – STEP 1
CHALLENGE: FLEXIBLE VARIABLE LENGTH

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATASET NAME</td>
<td>POSITION IN OBSERVATION</td>
<td>VARIABLE NAME</td>
<td>VARIABLE LABEL</td>
</tr>
<tr>
<td>2</td>
<td>ADSL</td>
<td>1</td>
<td>STUDYID</td>
<td>Study Identifier</td>
</tr>
<tr>
<td>3</td>
<td>ADSL</td>
<td>2</td>
<td>USUBJID</td>
<td>Unique Subject Identifier</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADSL</td>
<td>13</td>
<td>RACE</td>
<td>Race</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VARIABLE TYPE</td>
<td>LENGTH</td>
<td>DISPLAY FORMAT</td>
<td>CODELIST / CONTROLLED TERMS</td>
<td>SOURCE / DERIVATION</td>
</tr>
<tr>
<td>Char</td>
<td>?????????</td>
<td></td>
<td></td>
<td></td>
<td>DM.STUDYID</td>
</tr>
<tr>
<td>Char</td>
<td>?????????</td>
<td></td>
<td></td>
<td></td>
<td>DM.USUBJID</td>
</tr>
<tr>
<td>Char</td>
<td>?????????</td>
<td></td>
<td>(RACE)</td>
<td></td>
<td>DM.RACE</td>
</tr>
</tbody>
</table>
LINEAR METHOD – STEP 1
CHALLENGE: FLEXIBLE VARIABLE LENGTH

- CDISC SDTM IG
 - Version 5 SAS transport file format: max. 200 characters
 - -- TESTCD and QNAM: max. 8 characters
 - -- TEST and QLABEL: max. 40 characters

- Example: DM.RACE: $41, $50, and $200

- Amendment 1 to SDTM V1.2 and SDTM IGV3.1.2
 - Version 5 SAS transport file format: max. 200 characters
 - ! only if necessary!
LINEAR METHOD – STEP 1
CHALLENGE: FLEXIBLE VARIABLE LENGTH

- Traceability
- Flexible
- Delivery of consistent analysis datasets
- Easy to use
- Easy to maintain
LINEAR METHOD – STEP 1
SOLUTION: [SDTM] ↔ %ADAM(DS_ =)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATASET NAME</td>
<td>POSITION IN OBSERVATION</td>
<td>VARIABLE NAME</td>
<td>VARIABLE LABEL</td>
<td>VARIABLE TYPE</td>
<td>LENGTH</td>
<td>DISPLAY FORMAT</td>
<td>CODELIST / CONTROLLED TERMS</td>
<td>SOURCE / DERIVATION</td>
</tr>
<tr>
<td>2</td>
<td>ADSL</td>
<td>1</td>
<td>STUDYID</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td></td>
<td>DM.STUDYID</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADSL</td>
<td>2</td>
<td>USUBJID</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td></td>
<td>DM.USUBJID</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADSL</td>
<td>13</td>
<td>RACE</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td>[sdm]</td>
<td></td>
<td>(RACE)</td>
<td>DM.RACE</td>
</tr>
</tbody>
</table>
LINEAR METHOD – STEP 1
CHALLENGE: PERMISSIBLE VARIABLES

Example: LB.LBSCAT

Solution: \([\text{sdtm}] \leftrightarrow \%\text{ADAM}(\text{ds}__ =)\)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATASET NAME</td>
<td>POSITION IN OBSERVATION</td>
<td>VARIABLE NAME</td>
<td>VARIABLE LABEL</td>
<td>VARIABLE TYPE</td>
<td>LENGTH</td>
<td>DISPLAY FORMAT</td>
<td>CODELIST / CONTROLLED TERMS</td>
<td>SOURCE / DERIVATION</td>
</tr>
<tr>
<td>2</td>
<td>BDS</td>
<td>1</td>
<td>STUDYID</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>LB.STUDYID</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BDS</td>
<td>2</td>
<td>USUBJID</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>LB.USUBJID</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BDS</td>
<td>10</td>
<td>LBSCAT</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>LB.LBSCAT</td>
<td></td>
</tr>
</tbody>
</table>
Step 2
LINEAR METHOD – STEP 2
SUPP--

- **QNAME** → variable name
- **QLABEL** → variable label
- **QVAL** → variable type
- **QVAL** → variable length

* e.g. SUPPDM SDTM dataset
* e.g. ADSL ADaM dataset
LINEAR METHOD – STEP 2
CHALLENGE: FLEXIBLE CODE LIST

- **QLABEL is different for the same QNAM**
 - Example
 - ELIGCONF Subject Still Eligible
 - ELIGCONF Still Fulfill Eligibility Criteria

- **QLABEL format**
 - Example
 - RANDNO RANDOMIZATION NUMBER
 - RANDNO Randomization Number

- **QLABEL changes during the course of a study**
 - Example
 - ELIGIBLE **Subject** Eligible For Dosing
 - ELIGIBLE **Subject** Eligible For Dosing
LINEAR METHOD – STEP 2
SOLUTION: [SUPP] ↔ %ADAM(DS_=

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DATASET NAME</td>
<td>POSITION IN OBSERVATION</td>
<td>VARIABLE NAME</td>
<td>VARIABLE LABEL</td>
<td>VARIABLE TYPE</td>
<td>LENGTH</td>
<td>DISPLAY FORMAT</td>
<td>CODELIST / CONTROLLED TERMS</td>
</tr>
<tr>
<td>2</td>
<td>ADSL</td>
<td>1</td>
<td>STUDYID</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>DM.STUDYID</td>
</tr>
<tr>
<td>3</td>
<td>ADSL</td>
<td>2</td>
<td>USUBJID</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>DM.USUBJID</td>
</tr>
<tr>
<td>4</td>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADSL</td>
<td>13</td>
<td>RACE</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td>[sdtm]</td>
<td></td>
<td>DM.RACE</td>
</tr>
<tr>
<td>6</td>
<td>ADSL</td>
<td>14</td>
<td>RANDINO</td>
<td>[supp]</td>
<td>[supp]</td>
<td>[supp]</td>
<td></td>
<td>SUPPDM.OVAL</td>
</tr>
</tbody>
</table>
Step 3
LINEAR METHOD – STEP 3
CHALLENGE: 16 SDTM → 16 ADAM?!!
SDTM Column Resizing: Background and Industry Testing Results – Warfield and Chhatre

Research: CDISC Submission Dataset Sizes

Data Collection

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Size (Kb)</td>
<td>432</td>
<td>3</td>
<td>1,175,647</td>
<td>1,175,644</td>
<td>52,633.57</td>
<td>180,446.88</td>
</tr>
<tr>
<td>SAS Size b7dat (Kb)</td>
<td>432</td>
<td>5</td>
<td>224,865</td>
<td>224,860</td>
<td>10,010.28</td>
<td>37,732.55</td>
</tr>
<tr>
<td>JMP Size (Kb)</td>
<td>432</td>
<td>2</td>
<td>85,540</td>
<td>85,538</td>
<td>5,200.99</td>
<td>16,637.46</td>
</tr>
<tr>
<td>No. of Columns</td>
<td>432</td>
<td>4</td>
<td>129</td>
<td>125</td>
<td>17.29</td>
<td>14.10</td>
</tr>
<tr>
<td>No. of Records</td>
<td>432</td>
<td>1</td>
<td>955,963</td>
<td>956,962</td>
<td>33,275.03</td>
<td>126,287.91</td>
</tr>
</tbody>
</table>
LINEAR METHOD – STEP 3
CHALLENGE: 16 SDTM \rightarrow 16 ADaM?!?
LINEAR METHOD – STEP 3
SOLUTION: 1 CENTRAL MODEL + SPONSOR SPECIFIC ADD-ONS

1. Convert Excel file to SAS datasets (by ADaM administrator)
2. Combine central model and sponsor specific add-on (by study programmer)
LINEAR METHOD – STEP 3
SOLUTION: 1 CENTRAL MODEL + SPONSOR SPECIFIC ADD-ONS

- Traceability
- Flexible
- Delivery of consistent analysis datasets
- Easy to use
- Easy to maintain
Step 4
LINEAR METHOD – STEP 4
CHALLENGE: SDTM MODEL NO. 1, 2, 3 ... ?

SDTM

ADaM

?
LINEAR METHOD – STEP 4
SOLUTION: CENTRAL METADATA REPOSITORY

- CDISC metadata
 - SDTM version
 - SDTM metadata
 - ...

- Study characteristics
 - Therapeutic area
 - Clinical phase
 - Trial design characteristics
 - ...

- Project metadata
 - Study timelines
 - Key Performance Indicators
 - ...

Step 5
LINEAR METHOD – STEP 5
CHALLENGE: FUTURE

- **SDTM**
 - Device Supplement, draft 24-JAN-2012
 - Virology draft domains, draft AUG-2011
 - Development program for 55 therapeutic area standards in 5 years

- **ADaM**
 - BDS for Time-to-Event Analysis, draft 05-JAN-2011
 - Data Structure for Adverse Event Analysis, draft 02-FEB-2011

- **Coming up**
 - ???
OUTLINE – ADaM 2.1

- Introduction
- SDTM and ADaM implementation: Strategies
- Linear method
- Conclusion
SDTM AND ADaM: HANDS-ON SOLUTIONS

CONCLUSION

- Linear method:
 - Recommended
 - Challenging

- Solution:
 - SDTM: Central metadata repository
 - ADaM: Automatization, e.g. [sdtm], [supp] …

Study metadata differences are handled efficiently
CONTACT

Joris De Bondt
Head Data Standards & Process Improvements - Clinical Research
Email: joris.debondt@sgs.com

Tineke Callant
Senior Biostatistical Analyst
Email: tineke.callant@sgs.com

WWW.SGS.COM/CRO