Most documents are stored as Adobe pdf files and maybe viewed by clicking on their catalogue number e.g. L2. By right mouse clicking on the link and selecting the “Save Target As...” option you can also download the pdf file to your hard drive for viewing offline. You will require the free Adobe acrobat reader in order to read these documents, if you do not have it click here to download it.

Papers not available as Adobe pdf files may be obtained directly from the author.

INDEX:

LENGTH
- OFDA4000
- Staple length & strength
- Length after carding
- Single fibre length

COLOUR

DIAMETER
- Airflow
- OFDA100
- OFDA2000
- Laserscan
- Comparisons between Measurement Systems

YIELD

MISCELLANEOUS
- Conditioning
- Medullation
- Curvature & bulk
- Fibre type discrimination
- Fibre cleanliness
- Statistical techniques
- General wool metrology issues
- Third party reports
LENGTH

OFDA4000

L12 Proposed amendments to IWTO-17 to remove reference to manual grip, clarify sampling regime, and update precision statistics, P. Baxter, IWTO SG Sub 01, Biella, Nov 05
L13 Performance of OFDA4000 instruments in three mill laboratories, P. Baxter & M. Brims, IWTO SG Sub 01, Beijing, Apr 2008
L11 Report on the 2004/05 OFDA4000 and Almeter/OFDA100/Laserscan round trial, P. Baxter, IWTO SG02, Hobart, Apr 2005
L10 Experience with the OFDA4000 in two mills - comparisons with other instruments, M. Brims & P. Baxter, IWTO SG 01, Evian, May 2004

STAPLE LENGTH & STRENGTH

L9 Results of an international round trial using Agritest SB2 instruments to measure staple length and strength in accordance with IWTO-30. B.P. Baxter, IWTO raw wool group, Dresden, Jun 1998
L8 Staple length and strength: Short staples and second cuts, effects on coefficient of variation of length (CvL). B.P. Baxter, IWTO raw wool group, Dresden, Jun 1998
L5 Proposed addition to Appendix A of IWTO-30 (Description of Agritest Staple Breaker Model 2), B.P. Baxter, IWTO raw wool group, Boston, May 1997
L3 Repeatability data on length and strength (IWTO-30) determined by the Agritest Staple Length and Staple Breaker model 2 instruments, B.P. Baxter, IWTO raw wool group, Capetown, May 1996
L2 Comparative data on length and strength (IWTO-30) determined by ATLAS and by the Agritest Staple Length and Staple Breaker instruments, B.P. Baxter, IWTO raw wool group, Nice, Dec. 1995

LENGTH AFTER CARDING

L7 A survey of length distribution data for NZ scoured consignments that have been measured for Length after Carding (LAC). J. Wear & P. Baxter, IWTO tech. report 15, Dresden, Jun 1998

SINGLE FIBRE LENGTH

COLOUR

C3 Amendment to IWTO-31 - Tristimulus value combinations, B.P. Baxter & P.J. Sommerville, IWTO RWG submission, Shanghai, May 2001
C2 The effects of the use of different CIE illuminants and observers in IWTO-56 on the combination formulae in IWTO-31, B.P. Baxter, IWTO RWG App. 02, Nice, Nov 1999
C1 Some notes on the influence of colour on the measurement of medullation by OFDA, B.P. Baxter, IWTO SG report 01, Nice, Dec 1998

DIAMETER

AIRFLOW

D10 Residual grease levels in Waring blended samples, B.P. Baxter & Y. Liu, IWTO tech. report 1, Nice, Nov. 1993
OFDA 100

(diameter measurement only - see *Miscellaneous* for application of OFDA 100 to curvature, medullation, fibre type discrimination and fibre cleanliness measurements)

- **D28** An evaluation of the performance of the OFDA2000 instrument operating in OFDA 100 mode, B.P. Baxter, IWTO RWG report 03, Barcelona, May 2002
- **D13** 1994 OFDA round trials on greasy wool core samples, B.P Baxter & M.A. Brims, IWTO tech. report 5 and supplement 5R, Nice, Dec. 1994
- **D11** Review of the suitability of the 1993 series of Interwoollabs IH tops for calibration of the OFDA, B.P. Baxter, IWTO tech. report 14, New Delhi, Mar. 1994
- **D7** Suitability of Interwoollabs IH tops for calibration of the OFDA, B.P. Baxter & D.C. Teasdale, IWTO tech. report 10, Nice, Dec. 1992
- **D6** Linearity and focus independence of the OFDA, B.P. Baxter & M.A. Brims, IWTO tech. report 9, Nice, Dec. 1992
- **D5** OFDA round trials with greasy wool cores, B.P. Baxter, IWTO tech report 8, Nice, Dec. 1992
- **D4** Further studies on the performance of the OFDA, B.P. Baxter, M.A. Brims & T.B. Taylor, IWTO tech. report 8, Punta del Este, April 1992
- **D3** Measurement of the mean and distribution of fibre diameter of wool using an image analyser, (first draft), Test Method under Examination presented to the Sliver group of IWTO, Nice, Dec. 1991, and accepted after amendment in Punta del Este, Uruguay in April 1992. (now IWTO test method 47)

OFDA2000

- **D30** OFDA2000 proficiency trials, P. Baxter & W.L. Johnston, IWTO CTF 01, Nice, Nov 2002
- **D28** An evaluation of the performance of the OFDA2000 instrument operating in OFDA 100 mode, B.P. Baxter, IWTO RWG report 03, Barcelona, May 2002
- **D27** On-farm classing of animals and fleeces with the OFDA2000, P.Baxter, Wool Tech. & Sheep Breed., 2001, 49(2), 133-155

LASERSCAN

COMPARISONS BETWEEN MEASUREMENT SYSTEMS

D31 Comparisons between OFDA, Airflow and Laserscan on raw merino wool - Proposal to amend IWTO-47, P. Baxter, IWTO RWG 03, Nice, Nov 2002 (note: File size = 4.2 Mb)
D24 The effects of calibration errors on between-laboratory and between-instrument diameter comparisons, B.P. Baxter, IWTO SG report 01, Nice, Nov 1999
D23 Additional comments on the measurement of superfine wools by OFDA, airflow and Laserscan. B.P. Baxter, IWTO RWG report 03, Nice, Nov 1999
D22 Comparison of Laserscan, OFDA and airflow on raw wool samples. B.P. Baxter, IWTO RWG report 02, Nice, Dec 1998
D19 Some notes on the effects of relaxation on mean fibre diameter measurement. B.P. Baxter, IWTO sliver group, Boston, May 1997
D9 Influences on the comparisons between the mean fibre diameter of wools measured by airflow and by projected image methods, B.P. Baxter, Wool Techn. & Sheep Breed., 1994, 42 (2), 176-192 (orig. presented as IWTO tech. report 13, Istanbul, May 1993)

YIELD

Y8 The use of NIR technology to predict IWTO-19 ash residuals and its effects on woolbase, J. L. Wear, IWTO RWG 03, Buenos Aires, May 2003
Y7 The use of NIR technology for predicting IWTO-19 residual ash in a commercial laboratory, J.L. Wear, IWTO RWG 06, Nice, Nov 2002
Y6 The use of NIR to predict residual ash in the IWTO-19 yield test -2nd trial, J.L. Wear, IWTO raw wool group paper RWG02, Barcelona, May 2002
Y5 The use of NIR to predict residual ash in the IWTO-19 yield test, J.L. Wear, IWTO raw wool group paper RWG02, Nice, Dec 2001
Y4 Proposed amendment to IWTO-19, clause 6.2.3, B.P. Baxter, IWTO raw wool group, Nice, Dec 1996
Y3 Proposed amendments to IWTO-19 & IWTO-33 - determination of oven-dry mass, B.P. Baxter, IWTO raw wool group, Nice, Dec 1996
M5 Commercial data on the variability of 7000 kg sublots of NZ scoured wools, B.P. Baxter, IWTO raw wool group, Harrogate, Jun. 1995
Y1 Range errors in yield testing and the influence of wool type, B.P. Baxter & T. Taylor, IWTO RW/CSC paper, Cavtat, Yugoslavia, Jun. 1990

MISCELLANEOUS

CONDITIONING

M19 Statistical modeling of the conditioning curve, and validation of the rapid conditioning criterion proposed in Report SG05 at Christchurch, R Baxter, IWTO SG report 01, Nice, Nov 2000
M18 A new criterion for “time to condition” with data on rapid conditioning of opened fibre assemblies, P Baxter, IWTO SG report 05, ChCh, May 2000
M16 Some data on humidity-regain hysteresis and the possible influences on moisture equilibrium determination, B.P. Baxter, IWTO SG report 03, Nice, Nov 1999
MEDULLATION

CURVATURE & BULK

M23 Solvent scouring as a baseline treatment for experiments on mean fibre curvature, P. Baxter, IWTO RWG 04, Buenos Aires, May 2003
M21 Proposal for calibrating laboratory preparation systems and instruments to measure curvature on raw wool, P. Baxter, IWTO RWG 04, Nice, Nov 2002
D29a The precision and accuracy of OFDA instruments when measuring the curvature of graticules - Updated analyses from 40 instruments
D29 The precision and accuracy of OFDA instruments when measuring the curvature of graticules, B.P. Baxter, IWTO CTF report 12, Barcelona, May 2002
M8 Preliminary investigations into the use of OFDA for estimating bulk, B.P. Baxter, IWTO tech. report 13, Capetown, May 1996

FIBRE TYPE DISCRIMINATION

M14 Continued investigation of the use of OFDA for fibre type differentiation, B.P. Baxter, IWTO STG report 01, Nice, Dec 1998

FIBRE CLEANLINESS

M15 Investigation into the relationship between along fibre parameters measured by OFDA and IWTO-10 on top and yarn samples: An extension to Nice meeting 1997 Report 4, J.L. Wear, IWTO STG report 02, Nice, Dec 1998
M12 Investigation into the relationship between contamination parameters measured by the OFDA and IWTO-10 measurements on commercially-scoured Australiasian wool. J.L. Wear & B.P. Baxter, IWTO tech. report 4, Nice, Dec 1997
M1 Comparative extraction tests on tops using ethyl alcohol, acetone, dichloromethane, and t-butylmethylether, B.P. Baxter, IWTO tech. report 1, Paris, Dec. 1989

STATISTICAL TECHNIQUES

M22 Comparing precision from two test methods - Proposed amendment to IWTO-0, P. Baxter, T & S submission 01, Nice, Nov 2002
M17 Analyses of alkali solubility trial data published during the development of IWTO-4-60, P. Baxter & W. Ainsworth, IWTO STG App. 01, ChCh, May 2000
M9 Procedures for comparing: a) test methods, and b) different instruments within the same test method, B.P. Baxter, IWTO tech. report 17, Capetown, May 1996
M6 Compatibility and outlier testing in check testing from keeper material and recores, B.P. Baxter, IWTO raw wool group, Harrogate, Jun. 1995
M5 Commercial data on the variability of 7000 kg sublots of NZ scoured wools, B.P. Baxter, IWTO raw wool group, Harrogate, Jun. 1995
M3 Observations on procedures for comparing test methods, B.P. Baxter, IWTO tech. report 2, Nice, Nov. 1993

FIBRE CLEANLINESS
GENERAL WOOL METROLOGY ISSUES

M26 A comparison of New Zealand scoured wool test results 2003 to 2007, J Wear, IWTO RWG 02, Beijing, Apr 2008
M4 Current advanced technologies in raw wool testing, Yao Liu & Peter Baxter, First China International Wool Conference, Xi’an, P. R. China, Apr. 1994

THIRD PARTY REPORTS

CSIRO

SHEEP CRC

© 2012 SGS. All rights reserved. The information contained herein is provided “as is” and SGS does not warrant that it will be error-free or will meet any particular criteria of performance or quality. Do not quote or refer any information herein without SGS’ prior written consent. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.